MedMobile:具有專家級臨床能力的手機尺寸語言模型
MedMobile: A mobile-sized language model with expert-level clinical capabilities
October 11, 2024
作者: Krithik Vishwanath, Jaden Stryker, Anton Alaykin, Daniel Alexander Alber, Eric Karl Oermann
cs.AI
摘要
語言模型(LMs)在醫學領域展示了專家級的推理和回憶能力。然而,計算成本和隱私問題正在成為廣泛應用的障礙。我們介紹了一種簡潔的改編phi-3-mini,MedMobile,這是一個擁有38億參數的LM,可以在移動設備上運行,用於醫學應用。我們展示了MedMobile在MedQA(USMLE)上取得了75.7%的分數,超過了醫生的及格分數(約60%),並接近其100倍大小模型的分數。我們隨後進行了一系列仔細的消融實驗,並展示了思維鏈、集成和微調對性能提升的最大影響,而意外的檢索增強生成未能顯示出顯著改進。
English
Language models (LMs) have demonstrated expert-level reasoning and recall
abilities in medicine. However, computational costs and privacy concerns are
mounting barriers to wide-scale implementation. We introduce a parsimonious
adaptation of phi-3-mini, MedMobile, a 3.8 billion parameter LM capable of
running on a mobile device, for medical applications. We demonstrate that
MedMobile scores 75.7% on the MedQA (USMLE), surpassing the passing mark for
physicians (~60%), and approaching the scores of models 100 times its size. We
subsequently perform a careful set of ablations, and demonstrate that chain of
thought, ensembling, and fine-tuning lead to the greatest performance gains,
while unexpectedly retrieval augmented generation fails to demonstrate
significant improvementsSummary
AI-Generated Summary