ChatPaper.aiChatPaper

Адаптация автоматического распознавания речи для контроля воздушного движения с акцентом.

Adapting Automatic Speech Recognition for Accented Air Traffic Control Communications

February 27, 2025
Авторы: Marcus Yu Zhe Wee, Justin Juin Hng Wong, Lynus Lim, Joe Yu Wei Tan, Prannaya Gupta, Dillion Lim, En Hao Tew, Aloysius Keng Siew Han, Yong Zhi Lim
cs.AI

Аннотация

Эффективное взаимодействие в управлении воздушным движением (ATC) критично для обеспечения безопасности авиации, однако проблемы, вызванные акцентированным английским, остаются в значительной степени нерешенными в системах автоматического распознавания речи (ASR). Существующие модели испытывают трудности с точностью транскрипции речи с юго-восточноазиатским акцентом (SEA-акцентом), особенно в шумных средах ATC. В данном исследовании представлено развитие моделей ASR, настроенных специально на юго-восточноазиатские акценты с использованием недавно созданного набора данных. Наши исследования достигают значительных улучшений, достигая уровня ошибок слов (WER) 0.0982 или 9.82% для речи с SEA-акцентом в ATC. Кроме того, в статье подчеркивается важность региональных наборов данных и обучения с акцентом, предлагая путь для внедрения систем ASR в ресурсоемкие военные операции. Полученные результаты подчеркивают необходимость техник обучения, устойчивых к шуму, и региональных наборов данных для улучшения точности транскрипции для не-западных акцентов в коммуникациях ATC.
English
Effective communication in Air Traffic Control (ATC) is critical to maintaining aviation safety, yet the challenges posed by accented English remain largely unaddressed in Automatic Speech Recognition (ASR) systems. Existing models struggle with transcription accuracy for Southeast Asian-accented (SEA-accented) speech, particularly in noisy ATC environments. This study presents the development of ASR models fine-tuned specifically for Southeast Asian accents using a newly created dataset. Our research achieves significant improvements, achieving a Word Error Rate (WER) of 0.0982 or 9.82% on SEA-accented ATC speech. Additionally, the paper highlights the importance of region-specific datasets and accent-focused training, offering a pathway for deploying ASR systems in resource-constrained military operations. The findings emphasize the need for noise-robust training techniques and region-specific datasets to improve transcription accuracy for non-Western accents in ATC communications.

Summary

AI-Generated Summary

PDF52February 28, 2025