RM-Bench: Benchmarken van Beloningsmodellen van Taalmodellen met Subtiliteit en Stijl

RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style

October 21, 2024
Auteurs: Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, Juanzi Li
cs.AI

Samenvatting

Beloningsmodellen zijn cruciaal in technieken zoals Versterkend Leren van Menselijke Feedback (RLHF) en Inferentieschaalwetten, waar ze de uitlijning van taalmodellen sturen en optimale reacties selecteren. Ondanks hun belang, beoordelen bestaande beloningsmodelbenchmarks modellen vaak door ze te vragen onderscheid te maken tussen reacties gegenereerd door modellen van verschillende kracht. Deze aanpak slaagt er echter niet in om beloningsmodellen te beoordelen op subtiele maar cruciale inhoudsveranderingen en variaties in stijl, wat resulteert in een lage correlatie met de prestaties van beleidsmodellen. Daartoe introduceren we RM-Bench, een nieuw benchmark ontworpen om beloningsmodellen te evalueren op basis van hun gevoeligheid voor subtiele inhoudsverschillen en weerstand tegen stijlvooroordelen. Uitgebreide experimenten tonen aan dat RM-Bench sterk correleert met de prestaties van beleidsmodellen, waardoor het een betrouwbare referentie is voor het selecteren van beloningsmodellen om taalmodellen effectief uit te lijnen. We evalueren bijna 40 beloningsmodellen op RM-Bench. Onze resultaten tonen aan dat zelfs state-of-the-art modellen slechts een gemiddelde prestatie van 46,6% behalen, wat lager is dan de willekeurige nauwkeurigheid (50%) wanneer ze te maken krijgen met stijlvooroordeelinterferentie. Deze bevindingen benadrukken de aanzienlijke ruimte voor verbetering in de huidige beloningsmodellen. Gerelateerde code en gegevens zijn beschikbaar op https://github.com/THU-KEG/RM-Bench.
English
Reward models are critical in techniques like Reinforcement Learning from Human Feedback (RLHF) and Inference Scaling Laws, where they guide language model alignment and select optimal responses. Despite their importance, existing reward model benchmarks often evaluate models by asking them to distinguish between responses generated by models of varying power. However, this approach fails to assess reward models on subtle but critical content changes and variations in style, resulting in a low correlation with policy model performance. To this end, we introduce RM-Bench, a novel benchmark designed to evaluate reward models based on their sensitivity to subtle content differences and resistance to style biases. Extensive experiments demonstrate that RM-Bench strongly correlates with policy model performance, making it a reliable reference for selecting reward models to align language models effectively. We evaluate nearly 40 reward models on RM-Bench. Our results reveal that even state-of-the-art models achieve an average performance of only 46.6%, which falls short of random-level accuracy (50%) when faced with style bias interference. These findings highlight the significant room for improvement in current reward models. Related code and data are available at https://github.com/THU-KEG/RM-Bench.

Summary

AI-Generated Summary

Paper Overview

This literature introduces RM-BENCH, a benchmark designed to evaluate reward models' sensitivity to subtle content differences and resistance to style preferences in language model alignment. It highlights the challenges in current benchmarking methods and emphasizes the need for improved reward model performance in handling style biases.

Core Contribution

The key innovation lies in the creation of RM-BENCH, a comprehensive benchmark that assesses reward models' abilities to detect subtle content variations and resist style biases, providing a reliable reference for selecting effective reward models for language model alignment.

Research Context

This paper addresses the limitations in existing reward model benchmarking and emphasizes the importance of evaluating reward models for language model alignment with a focus on sensitivity to content nuances and style preferences.

Keywords

Reward Models, RM-BENCH, Language Model Alignment, Style Preferences, Benchmarking, Policy Models

Background

The research background involves the need for improved evaluation methods for reward models in language model alignment, specifically focusing on content distinctions and style variations. Existing benchmarking approaches lack sensitivity to subtle content changes and style biases, prompting the development of RM-BENCH.

Research Gap

The specific gap in the literature is the inadequate evaluation of reward models' performance in detecting subtle content differences and resisting style preferences, which are crucial for effective language model alignment.

Technical Challenges

The technical obstacles include the design of a benchmark that accurately assesses reward models' abilities to handle content variations and style biases, which are essential for enhancing language model alignment.

Prior Approaches

Existing benchmarking methods often fall short in evaluating reward models' performance in distinguishing responses based on content nuances and style variations, necessitating the introduction of RM-BENCH for a more comprehensive evaluation.

Methodology

The research methodology involves the construction of RM-BENCH to evaluate reward models across various domains, including Chat, Code, Math, and Safety. The benchmark assesses models' performance in detecting factual inaccuracies, reasoning tasks, and handling style preferences.

Theoretical Foundation

RM-BENCH is built on a theoretical basis that emphasizes the importance of reward models in language model alignment and the need for robust evaluation metrics to measure performance accurately.

Technical Architecture

The system design includes the generation of prompts, chosen and rejected responses, and the categorization of responses based on accuracy and style variations to evaluate reward models effectively.

Implementation Details

Specific algorithms and methods are employed to generate responses, control styles, and assess reward model performance across different domains, highlighting the challenges in handling content nuances and style biases.

Innovation Points

The innovation lies in the detailed evaluation of reward models' performance on RM-BENCH, showcasing the need for significant improvements in handling style preferences and the potential of Direct Preference Optimization models for effective reward modeling.

Experimental Validation

The experimental validation involves setting up RM-BENCH with specific configurations, datasets, and metrics to evaluate reward models' performance in detecting errors, reasoning tasks, and handling style biases effectively.

Setup

Exact configurations, parameters, and datasets are detailed for each domain, including Chat, Code, Math, and Safety, to assess reward models' abilities across different tasks accurately.

Metrics

Precise evaluation criteria such as Easy Accuracy, Normal Accuracy, and Hard Accuracy are used to measure reward models' performance on RM-BENCH, providing insights into their effectiveness in handling content variations and style preferences.

Results

Quantitative and qualitative findings demonstrate that advanced models struggle to surpass random-level accuracy in handling style biases, emphasizing the need for significant advancements in reward model performance.

Comparative Analysis

A detailed comparison between Direct Preference Optimization models and sequence classifiers reveals the potential of DPO models in outperforming traditional reward models, indicating promising avenues for future research in reward modeling.

Impact and Implications

The impact and implications of this study underscore the critical findings regarding reward model evaluation, the limitations of existing benchmarking methods, and the future directions for enhancing reward model performance in language model alignment.

Key Findings

The key contributions include the development of RM-BENCH for evaluating reward models' sensitivity to content differences and style biases, highlighting the necessity for improved performance in handling style preferences.

Limitations

An honest assessment reveals limitations in RM-BENCH's coverage of bias types and potential benchmark hacking, emphasizing the need for continued refinement in evaluating reward models effectively.

Future Directions

Concrete research opportunities include exploring multi-objective reward models, investigating the correlation between reward model performance and policy model outcomes, and enhancing reward models' abilities to handle style biases effectively.

Practical Significance

The practical applications of this study extend to selecting optimal reward models for language model alignment, improving policy model performance, and fostering a deeper understanding of reward modeling in natural language processing tasks.

Uitgelichte Papers

DeepSeek-R1: Het stimuleren van redeneervermogen in LLM's via Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen ZhangJan 22, 20253685

Technisch Rapport Qwen2.5
Qwen2.5 Technical Report

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan QiuDec 19, 202436311

MiniMax-01: Schalen van Foundation Modellen met Bliksem Aandacht
MiniMax-01: Scaling Foundation Models with Lightning Attention

MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia WuJan 14, 20252826

PDF242November 16, 2024