Riflessioni dal 2024 Hackathon del Grande Modello Linguistico (LLM) per Applicazioni in Scienza dei Materiali e Chimica
Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry
November 20, 2024
Autori: Yoel Zimmermann, Adib Bazgir, Zartashia Afzal, Fariha Agbere, Qianxiang Ai, Nawaf Alampara, Alexander Al-Feghali, Mehrad Ansari, Dmytro Antypov, Amro Aswad, Jiaru Bai, Viktoriia Baibakova, Devi Dutta Biswajeet, Erik Bitzek, Joshua D. Bocarsly, Anna Borisova, Andres M Bran, L. Catherine Brinson, Marcel Moran Calderon, Alessandro Canalicchio, Victor Chen, Yuan Chiang, Defne Circi, Benjamin Charmes, Vikrant Chaudhary, Zizhang Chen, Min-Hsueh Chiu, Judith Clymo, Kedar Dabhadkar, Nathan Daelman, Archit Datar, Matthew L. Evans, Maryam Ghazizade Fard, Giuseppe Fisicaro, Abhijeet Sadashiv Gangan, Janine George, Jose D. Cojal Gonzalez, Michael Götte, Ankur K. Gupta, Hassan Harb, Pengyu Hong, Abdelrahman Ibrahim, Ahmed Ilyas, Alishba Imran, Kevin Ishimwe, Ramsey Issa, Kevin Maik Jablonka, Colin Jones, Tyler R. Josephson, Greg Juhasz, Sarthak Kapoor, Rongda Kang, Ghazal Khalighinejad, Sartaaj Khan, Sascha Klawohn, Suneel Kuman, Alvin Noe Ladines, Sarom Leang, Magdalena Lederbauer, Sheng-Lun Mark Liao, Hao Liu, Xuefeng Liu, Stanley Lo, Sandeep Madireddy, Piyush Ranjan Maharana, Shagun Maheshwari, Soroush Mahjoubi, José A. Márquez, Rob Mills, Trupti Mohanty, Bernadette Mohr, Seyed Mohamad Moosavi, Alexander Moßhammer, Amirhossein D. Naghdi, Aakash Naik, Oleksandr Narykov, Hampus Näsström, Xuan Vu Nguyen, Xinyi Ni, Dana O'Connor, Teslim Olayiwola, Federico Ottomano, Aleyna Beste Ozhan, Sebastian Pagel, Chiku Parida, Jaehee Park, Vraj Patel, Elena Patyukova, Martin Hoffmann Petersen, Luis Pinto, José M. Pizarro, Dieter Plessers, Tapashree Pradhan, Utkarsh Pratiush, Charishma Puli, Andrew Qin, Mahyar Rajabi, Francesco Ricci, Elliot Risch, Martiño Ríos-García, Aritra Roy, Tehseen Rug, Hasan M Sayeed, Markus Scheidgen, Mara Schilling-Wilhelmi, Marcel Schloz, Fabian Schöppach, Julia Schumann, Philippe Schwaller, Marcus Schwarting, Samiha Sharlin, Kevin Shen, Jiale Shi, Pradip Si, Jennifer D'Souza, Taylor Sparks, Suraj Sudhakar, Leopold Talirz, Dandan Tang, Olga Taran, Carla Terboven, Mark Tropin, Anastasiia Tsymbal, Katharina Ueltzen, Pablo Andres Unzueta, Archit Vasan, Tirtha Vinchurkar, Trung Vo, Gabriel Vogel, Christoph Völker, Jan Weinreich, Faradawn Yang, Mohd Zaki, Chi Zhang, Sylvester Zhang, Weijie Zhang, Ruijie Zhu, Shang Zhu, Jan Janssen, Ian Foster, Ben Blaiszik
cs.AI
Abstract
Qui presentiamo i risultati del secondo Hackathon del Grande Modello Linguistico (LLM) per Applicazioni in Scienza dei Materiali e Chimica, che ha coinvolto partecipanti in diverse sedi ibride globali, portando a 34 proposte di squadra. Le proposte hanno coperto sette aree applicative chiave e hanno dimostrato l'ampia utilità dei LLM per applicazioni in (1) previsione di proprietà molecolari e materiali; (2) progettazione molecolare e dei materiali; (3) automazione e interfacce innovative; (4) comunicazione scientifica e educazione; (5) gestione e automazione dei dati di ricerca; (6) generazione e valutazione di ipotesi; e (7) estrazione di conoscenza e ragionamento dalla letteratura scientifica. Ogni proposta di squadra è presentata in una tabella riassuntiva con collegamenti al codice e brevi articoli nell'allegato. Oltre ai risultati delle squadre, discutiamo dell'evento dell'hackathon e del suo formato ibrido, che includeva sedi fisiche a Toronto, Montreal, San Francisco, Berlino, Losanna e Tokyo, insieme a un'hub online globale per consentire la collaborazione locale e virtuale. Complessivamente, l'evento ha evidenziato significativi miglioramenti nelle capacità dei LLM rispetto all'hackathon dell'anno precedente, suggerendo un continuo ampliamento dei LLM per applicazioni nella ricerca scientifica dei materiali e della chimica. Questi risultati dimostrano la duplice utilità dei LLM come modelli multipurpose per diverse attività di apprendimento automatico e piattaforme per la prototipazione rapida di applicazioni personalizzate nella ricerca scientifica.
English
Here, we present the outcomes from the second Large Language Model (LLM)
Hackathon for Applications in Materials Science and Chemistry, which engaged
participants across global hybrid locations, resulting in 34 team submissions.
The submissions spanned seven key application areas and demonstrated the
diverse utility of LLMs for applications in (1) molecular and material property
prediction; (2) molecular and material design; (3) automation and novel
interfaces; (4) scientific communication and education; (5) research data
management and automation; (6) hypothesis generation and evaluation; and (7)
knowledge extraction and reasoning from scientific literature. Each team
submission is presented in a summary table with links to the code and as brief
papers in the appendix. Beyond team results, we discuss the hackathon event and
its hybrid format, which included physical hubs in Toronto, Montreal, San
Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable
local and virtual collaboration. Overall, the event highlighted significant
improvements in LLM capabilities since the previous year's hackathon,
suggesting continued expansion of LLMs for applications in materials science
and chemistry research. These outcomes demonstrate the dual utility of LLMs as
both multipurpose models for diverse machine learning tasks and platforms for
rapid prototyping custom applications in scientific research.Summary
AI-Generated Summary