LSceneLLM: Migliorare la Comprensione di Grandi Scene 3D Utilizzando Preferenze Visuali Adattive
LSceneLLM: Enhancing Large 3D Scene Understanding Using Adaptive Visual Preferences
December 2, 2024
Autori: Hongyan Zhi, Peihao Chen, Junyan Li, Shuailei Ma, Xinyu Sun, Tianhang Xiang, Yinjie Lei, Mingkui Tan, Chuang Gan
cs.AI
Abstract
La ricerca sui Modelli di Visione-Linguaggio in 3D (3D-VLMs) sta attirando sempre più attenzione, essenziale per lo sviluppo dell'Intelligenza Artificiale incorporata all'interno di scene in 3D, come la navigazione visiva e la risposta a domande incorporate. A causa dell'alta densità di caratteristiche visive, specialmente in grandi scene in 3D, individuare con precisione le informazioni visive rilevanti per il compito è una sfida. I lavori esistenti cercano di segmentare tutti gli oggetti e considerare le loro caratteristiche come rappresentazioni della scena. Tuttavia, queste caratteristiche degli oggetti agnostiche rispetto al compito includono molte informazioni ridondanti e dettagli mancanti per l'area rilevante per il compito. Per affrontare questi problemi, proponiamo LSceneLLM, un framework adattivo che identifica automaticamente le aree rilevanti per il compito sfruttando le preferenze visive di LLM per diversi compiti, seguito da un modulo ingranditore di scene plug-and-play per catturare dettagli fini nelle aree focalizzate. In particolare, un selettore di token denso esamina la mappa di attenzione di LLM per identificare le preferenze visive per l'input dell'istruzione. Successivamente, ingrandisce i dettagli fini dell'area di messa a fuoco. Un modulo di auto-attenzione adattivo viene sfruttato per fondere le informazioni visive grossolane e selezionate fini. Per valutare in modo esaustivo la capacità di comprensione di grandi scene dei 3D-VLMs, introduciamo ulteriormente un benchmark di comprensione tra stanze, XR-Scene, che contiene una serie di compiti di comprensione di grandi scene tra cui XR-QA, XR-PianificazioneIncorporata e XR-SceneCaption. Gli esperimenti mostrano che il nostro metodo supera i metodi esistenti sia nella comprensione di grandi scene che nei benchmark di comprensione delle scene esistenti. Inoltre, l'introduzione del nostro modulo ingranditore di scene nei 3D-VLMs esistenti porta a un significativo miglioramento.
English
Research on 3D Vision-Language Models (3D-VLMs) is gaining increasing
attention, which is crucial for developing embodied AI within 3D scenes, such
as visual navigation and embodied question answering. Due to the high density
of visual features, especially in large 3D scenes, accurately locating
task-relevant visual information is challenging. Existing works attempt to
segment all objects and consider their features as scene representations.
However, these task-agnostic object features include much redundant information
and missing details for the task-relevant area. To tackle these problems, we
propose LSceneLLM, an adaptive framework that automatically identifies
task-relevant areas by leveraging LLM's visual preference for different tasks,
followed by a plug-and-play scene magnifier module to capture fine-grained
details in focused areas. Specifically, a dense token selector examines the
attention map of LLM to identify visual preferences for the instruction input.
It then magnifies fine-grained details of the focusing area. An adaptive
self-attention module is leveraged to fuse the coarse-grained and selected
fine-grained visual information. To comprehensively evaluate the large scene
understanding ability of 3D-VLMs, we further introduce a cross-room
understanding benchmark, XR-Scene, which contains a series of large scene
understanding tasks including XR-QA, XR-EmbodiedPlanning, and XR-SceneCaption.
Experiments show that our method surpasses existing methods on both large scene
understanding and existing scene understanding benchmarks. Plunging our scene
magnifier module into the existing 3D-VLMs also brings significant improvement.Summary
AI-Generated Summary
DeepSeek-R1: Incentivizzare la capacità di ragionamento nei LLM tramite Apprendimento per RinforzoDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Incentivizzare la capacità di ragionamento nei LLM tramite Apprendimento per Rinforzo
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Rapporto Tecnico Qwen2.5Qwen2.5 Technical Report
Rapporto Tecnico Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01: Scalare i modelli di base con attenzione lampeggianteMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Scalare i modelli di base con attenzione lampeggiante
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2826