LumiNet: Intrinseci Latenti Incontrano Modelli di Diffusione per il Rilievo delle Scene Interne
LumiNet: Latent Intrinsics Meets Diffusion Models for Indoor Scene Relighting
November 29, 2024
Autori: Xiaoyan Xing, Konrad Groh, Sezer Karaoglu, Theo Gevers, Anand Bhattad
cs.AI
Abstract
Introduciamo LumiNet, una nuova architettura che sfrutta modelli generativi e rappresentazioni intrinseche latenti per un efficace trasferimento dell'illuminazione. Dato un'immagine di origine e un'immagine di illuminazione di destinazione, LumiNet sintetizza una versione rilucente della scena di origine che cattura l'illuminazione di destinazione. Il nostro approccio apporta due contributi chiave: una strategia di cura dei dati dal modello di illuminazione basato su StyleGAN per il nostro addestramento e un ControlNet basato sulla diffusione modificata che elabora sia le proprietà intrinseche latenti dell'immagine di origine che le proprietà estrinseche latenti dell'immagine di destinazione. Miglioriamo ulteriormente il trasferimento dell'illuminazione attraverso un adattatore appreso (MLP) che inietta le proprietà estrinseche latenti della destinazione tramite attenzione incrociata e raffinamento.
A differenza del tradizionale ControlNet, che genera immagini con mappe condizionali da una singola scena, LumiNet elabora rappresentazioni latenti da due immagini diverse - preservando geometria e albedo dalla sorgente mentre trasferisce le caratteristiche dell'illuminazione dalla destinazione. Gli esperimenti dimostrano che il nostro metodo trasferisce con successo fenomeni di illuminazione complessi, inclusi riflessi speculari e illuminazione indiretta tra scene con layout spaziali e materiali variabili, superando gli approcci esistenti su scene interne impegnative utilizzando solo immagini come input.
English
We introduce LumiNet, a novel architecture that leverages generative models
and latent intrinsic representations for effective lighting transfer. Given a
source image and a target lighting image, LumiNet synthesizes a relit version
of the source scene that captures the target's lighting. Our approach makes two
key contributions: a data curation strategy from the StyleGAN-based relighting
model for our training, and a modified diffusion-based ControlNet that
processes both latent intrinsic properties from the source image and latent
extrinsic properties from the target image. We further improve lighting
transfer through a learned adaptor (MLP) that injects the target's latent
extrinsic properties via cross-attention and fine-tuning.
Unlike traditional ControlNet, which generates images with conditional maps
from a single scene, LumiNet processes latent representations from two
different images - preserving geometry and albedo from the source while
transferring lighting characteristics from the target. Experiments demonstrate
that our method successfully transfers complex lighting phenomena including
specular highlights and indirect illumination across scenes with varying
spatial layouts and materials, outperforming existing approaches on challenging
indoor scenes using only images as input.Summary
AI-Generated Summary
DeepSeek-R1: Incentivizzare la capacità di ragionamento nei LLM tramite Apprendimento per RinforzoDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-R1: Incentivizzare la capacità di ragionamento nei LLM tramite Apprendimento per Rinforzo
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, Zhen Zhang•Jan 22, 2025•3685
Rapporto Tecnico Qwen2.5Qwen2.5 Technical Report
Rapporto Tecnico Qwen2.5
Qwen2.5 Technical Report
Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu•Dec 19, 2024•36311
MiniMax-01: Scalare i modelli di base con attenzione lampeggianteMiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax-01: Scalare i modelli di base con attenzione lampeggiante
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu•Jan 14, 2025•2836