ChatPaper.aiChatPaper

RePO: ReLU-based Preference Optimization

March 10, 2025
Authors: Junkang Wu, Kexin Huang, Xue Wang, Jinyang Gao, Bolin Ding, Jiancan Wu, Xiangnan He, Xiang Wang
cs.AI

Abstract

Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter beta, subsequent methods like SimPO reintroduce complexity through dual parameters (beta, gamma). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates beta via two advances: (1) retaining SimPO's reference-free margins but removing beta through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case (beta to infty), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.

Summary

AI-Generated Summary

PDF11March 11, 2025