ChatPaper.aiChatPaper

Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models

February 20, 2025
Authors: Yeonjun In, Wonjoong Kim, Kanghoon Yoon, Sungchul Kim, Mehrab Tanjim, Kibum Kim, Chanyoung Park
cs.AI

Abstract

As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SAFEBENCH, the first benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 18 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.

Summary

AI-Generated Summary

PDF152February 24, 2025