ChatPaper.aiChatPaper

LongWriter-V: Enabling Ultra-Long and High-Fidelity Generation in Vision-Language Models

February 20, 2025
Authors: Shangqing Tu, Yucheng Wang, Daniel Zhang-Li, Yushi Bai, Jifan Yu, Yuhao Wu, Lei Hou, Huiqin Liu, Zhiyuan Liu, Bin Xu, Juanzi Li
cs.AI

Abstract

Existing Large Vision-Language Models (LVLMs) can process inputs with context lengths up to 128k visual and text tokens, yet they struggle to generate coherent outputs beyond 1,000 words. We find that the primary limitation is the absence of long output examples during supervised fine-tuning (SFT). To tackle this issue, we introduce LongWriter-V-22k, a SFT dataset comprising 22,158 examples, each with multiple input images, an instruction, and corresponding outputs ranging from 0 to 10,000 words. Moreover, to achieve long outputs that maintain high-fidelity to the input images, we employ Direct Preference Optimization (DPO) to the SFT model. Given the high cost of collecting human feedback for lengthy outputs (e.g., 3,000 words), we propose IterDPO, which breaks long outputs into segments and uses iterative corrections to form preference pairs with the original outputs. Additionally, we develop MMLongBench-Write, a benchmark featuring six tasks to evaluate the long-generation capabilities of VLMs. Our 7B parameter model, trained with LongWriter-V-22k and IterDPO, achieves impressive performance on this benchmark, outperforming larger proprietary models like GPT-4o. Code and data: https://github.com/THU-KEG/LongWriter-V

Summary

AI-Generated Summary

PDF202February 21, 2025