ChatPaper.aiChatPaper

LLPut: Investigating Large Language Models for Bug Report-Based Input Generation

March 26, 2025
Authors: Alif Al Hasan, Subarna Saha, Mia Mohammad Imran, Tarannum Shaila Zaman
cs.AI

Abstract

Failure-inducing inputs play a crucial role in diagnosing and analyzing software bugs. Bug reports typically contain these inputs, which developers extract to facilitate debugging. Since bug reports are written in natural language, prior research has leveraged various Natural Language Processing (NLP) techniques for automated input extraction. With the advent of Large Language Models (LLMs), an important research question arises: how effectively can generative LLMs extract failure-inducing inputs from bug reports? In this paper, we propose LLPut, a technique to empirically evaluate the performance of three open-source generative LLMs -- LLaMA, Qwen, and Qwen-Coder -- in extracting relevant inputs from bug reports. We conduct an experimental evaluation on a dataset of 206 bug reports to assess the accuracy and effectiveness of these models. Our findings provide insights into the capabilities and limitations of generative LLMs in automated bug diagnosis.

Summary

AI-Generated Summary

PDF42March 28, 2025